牵引车厂家
免费服务热线

Free service

hotline

010-00000000
牵引车厂家
热门搜索:
行业资讯
当前位置:首页 > 行业资讯

【消息】1立方米时地埋式污水处理设备

发布时间:2020-11-17 07:19:56 阅读: 来源:牵引车厂家

1立方米/时地埋式污水处理设备

核心提示:1立方米/时地埋式污水处理设备处理效果好,运行稳定;操作简单有专业的技术人员以及售后服务人员及时为您服务1立方米/时地埋式污水处理设备

处理效果好,运行稳定;操作简单

有专业的技术人员以及售后服务人员及时为您服务 两套污水处理工艺对于进水中COD的去除效果如图 2所示.由图可知进水COD为97~421 mg·L-1, 平均值为248.3 mg·L-1, 标准偏差为68%, 进水有机负荷波动较大; 经过生物吸附段后, COD降至76~178 mg·L-1, 平均值为105.2 mg·L-1, 标准偏差为17%.这说明生物吸附段可以在较短的时间内富集进水中的有机物, 有利于减少后续处理段的有机负荷及有毒有害物质的影响.该工艺段的特点是占地面积小、污泥产量大, 剩余污泥采用厌氧发酵产酸的处理方式, 用于生产优质碳源, 真正实现污水处理的资源化利用.由于污泥厌氧发酵液多为易降解有机物, 因此, 投加到A2O和MBR池后并未对出水造成影响.如图 2a和2b所示, 在A2O段中投加的发酵液使活性污泥中微生物大量生长繁殖, 提高了系统中异养菌群的活性, 此外, 缺氧池反硝化作用对碳源的消耗, 使得有机物浓度进一步降低.由于MBR反应器的膜高效截留作用和降解作用, 大部分剩余COD在此完成降解.第4阶段生物吸附/A2O和生物吸附/MBR/硫铁自养反硝化工艺出水COD平均值分别为38.3和35.9 mg·L-1, 平均去除率分别达到了83.4%和82.0%, 优于一级A标准出水水质的要求.

河北省:石家庄市 保定市 唐山市 邯郸市 邢台市 沧州市 衡水市 廊坊市 承德市 迁安市 鹿泉市 秦皇岛市 南宫市 任丘市 葉城市 辛集市涿州市 定州市 晋州市 霸州市 黄骅市 遵化市 张家口市 沙河市 三河市 冀州市 武安市 河间市深州市 新乐市 泊头市 安国市 双滦区 高碑店市河南省:郑州市 洛阳市 焦作市 商丘市 信阳市 周口市 鹤壁市 安阳市 濮阳市 驻马店市 南阳市 开封市漯河市 许昌市 新乡市 济源市 灵宝市偃师市 邓州市 登封市 三门峡市 新郑市 禹州市 巩义市 永城市 长葛市 义马市 林州市 项城市 汝州市 荥阳市 平顶山市 卫辉市 辉县市 舞钢市新密市 孟州市 沁阳市 郏县黑龙江省:哈尔滨市 伊春市 牡丹江市 大庆市 鸡西市 鹤岗市 绥化市 齐齐哈尔市 黑河市 富锦市 虎林市密山市 佳木斯市 双鸭山市 海林市 铁力市北安市 五大连池市 阿城市 尚志市 五常市 安达市 七台河市 绥芬河市 双城市 海伦市宁安市 讷河市 穆棱市 同江市 肇东市湖北省:武汉市 荆门市 咸宁市 襄樊市 荆州市 黄石市 宜昌市 随州市 鄂州市 孝感市黄冈市 十堰市 枣阳市 老河口市 恩施市 仙桃市 天门市 钟祥市 潜江市 麻城市 洪湖市 汉川市赤壁市 松滋市 丹江口市 武穴市 广水市 石首市大冶市 枝江市 应城市 宜城市 当阳市 安陆市 宜都市 利川市湖南省:长沙市 郴州市 益阳市 娄底市 株洲市 衡阳市 湘潭市 岳阳市 常德市 邵阳市 永州市 张家界市 怀化市浏阳市 醴陵市 湘乡市 耒阳市 沅江市 涟源市 常宁市 吉首市 津市市 冷水江市 临湘市 汨罗市 武冈市 韶山市 安化县湘西州

3.1.2 氮的去除  进出水总氮、氨氮及硝态氮浓度变化如图 3所示.进水总氮浓度为21.2~46.7 mg·L-1, 平均值为32.6 mg·L-1; 进水中硝态氮浓度平均值为0.66 mg·L-1, 总氮成分中大部分为氨氮, 平均占比达到85.8%.如图 3a所示, 在生物吸附/A2O工艺运行各阶段中, 系统硝化性能较好, 出水氨氮均在5 mg·L-1以下, 实现了一级A标准的达标排放.但由于进水中缺少碳源, 第1阶段出水总氮过高, 平均值为17.6 mg·L-1, 标准偏差为1.8%;第2、3和4阶段不同批次碳源的投加不仅促进了活性污泥系统的反硝化功能, 硝态氮浓度下降明显, 而且促进系统中异养微生物大量增殖, 微生物细胞合成过程中消耗大量的氨氮, 使得出水总氮浓度平均值分别降至11.0、8.6和6.3 mg·L-1, 标准偏差分别为1.6%、1.2%和0.8%, 实现了污水处理的深度脱氮.  在生物吸附/MBR/硫铁自养反硝化系统运行的第1阶段, 如图 3b所示, 硫自养反硝化具有良好的脱氮性能, 在硫铁滤池HRT为0.8 h时即实现了83%的总氮去除率, 出水硝态氮平均浓度降至3.4 mg·L-1, 脱氮效率符合之前的文献报道(任争鸣等, 2016; 苏晓磊等, 2015).从第2阶段开始投加污泥厌氧发酵液, 发酵液中除含有大量的挥发性脂肪酸外, 还含有较高浓度的氨氮(周光杰等, 2015; 曾建忠等, 2015), 增高的有机负荷削弱了活性污泥菌群的硝化能力, 导致第2阶段系统出现了一定程度的紊乱; 此外, 单质铁对硝态氮有一定的还原作用, 且生成的主要产物是氨氮(苏晓磊, 2015), 从而导致出水氨氮及总氮均出现了超标现象.经过一段时间的适应, 在第3阶段MBR池的硝化能力逐渐恢复到正常水平.在第4阶段将硫铁滤池的HRT提高至2.7 h后, 功能微生物和析出的Fe3+与污染物充分接触反应, 进而使污染物出水浓度更低, 硫铁自养反硝化系统反硝化效果更好更稳定, 且单质铁对硝态氮还原作用降低, 使出水氨氮及总氮分别稳定在1和5 mg·L-1以下, 实现了污水处理深度脱氮的目标.生物吸附/A2O工艺设计进水流量为50 mL·min-1; 生物吸附段有效容积为1.5 L, HRT为0.5 h, 污泥龄(Sludge Retention Time, SRT)为2 d, 溶解氧(Dissolved Oxygen, DO)维持在0.5~1.0 mg·L-1, 混合液悬浮固体浓度(Mixed Liquor Suspended Solid, MLSS)为4000~5000 mg·L-1; A2O反应器的总HRT为11.2 h, 厌氧段、缺氧段和好氧段的HRT分别为1.6、3.2和6.4 h, SRT为20 d, 硝化液回流比为1.5, 污泥回流比例为0.8, MLSS为3000~4000 mg·L-1.生物吸附段和A2O段的接种污泥均为无锡市某污水处理厂污泥, MLVSS/MLSS平均值为0.58.试验分为4个阶段进行:第1阶段无外部碳源投加, 第2、3和4阶段为实现深度氮磷去除及蛋白质源污泥增量, 投加不同量的生物吸附段污泥厌氧发酵液, 设置投加量折算成COD当量分别为130、200和270 mg·L-1.  生物吸附/MBR/硫铁自养反硝化组合工艺MBR采用0.02 μm平板膜, 膜通量为10 L·m-2·h-1, SRT为20 d, HRT为7 h, DO为5~7 mg·L-1, MLSS维持在6500~8000 mg·L-1; 硫铁自养反硝化滤池内径为10 cm, 底部为10 cm的碎石承托层, 填料硫粒径为2~4 mm, 孔隙率约为50%, 铁屑以塑料球形式包裹, 填充比例为20%.试验分为4个阶段进行, 第1阶段为组合工艺的试运行阶段, 硫铁自养反硝化滤池的HRT设定为0.8 h; 第2、3和4阶段的HRT分别设定为1.3、2.0和2.7 h.此外, 第2、3和4阶段在MBR工艺段投加生物吸附段剩余污泥厌氧发酵液, 投加量折算成COD当量同样分别为130、200和270 mg·L-1.  2.2 原水水质及碳源成分  试验进水为无锡市某污水处理厂旋流沉砂池出水, 工业废水比例约为25%, 主要水质指标范围如表 1所示.根据实际污泥厌氧发酵液组分配制投加的碳源(周光杰等, 2015), 主要指标如表 1所示.  2.3 分析方法  COD、氨氮、总氮、硝态氮、总磷、磷酸盐、MLSS、MLVSS采用标准方法测定(APHA, 1998), 蛋白质含量采用凯式定氮法进行测定(汪家政, 2000).污泥中的氨基酸含量采用Agilent1260氨基酸专用高效液相色谱仪进行测试分析.氮的同化量以系统中微生物增长量的12%计算(Li et al., 2007), 微生物增长量根据MLVSS及反应器体积计算.氮的同化率为同化量占去除总量的百分比, 计算公式如式(1)和(2)所示., WA为氮的同化量(mg·L-1), WS为系统中的微生物增长量(mg·L-1), PA为氮的同化率, WTN为总氮去除量(mg·L-1).近年来, 我国许多地区开始执行更加严格的地方污水处理标准, 如《北京地方水污染排放标准》(DB11/307—2013)中的A标准将出水化学需氧量(COD)、总氮(TN)和总磷(TP)的限值分别降低至20、10和0.2 mg·L-1, 更高标准的出水要求已成为城镇污水处理厂稳定达标的重要难题, 因此, 探索高效低耗的污水处理工艺成为研究热点。  城市污水处理行业如何实现资源循环利用, 是当前的重要任务, 也是今后的发展方向.在以污水处理资源化为理念的污水处理厂中, 污泥的处理处置起到重要的作用.城镇污水处理厂的剩余污泥绝大部分为微生物细胞体, 经破壁预处理后, 提取的蛋白质含量占到污泥质量的30%~60%(Tanaka et al., 1997; Ras et al., 2008), 因此, 污水处理厂剩余污泥蛋白质资源化利用越来越受到关注(Pack et al., 2008; 陈伟华等, 2011).污泥提取蛋白质可应用于动物饲料、泡沫灭火剂、混凝土发泡剂等领域(Clevenger, 1990; 赵顺顺等, 2008; 李亚东等, 2005; 汪常青等, 2006), 具有较大的应用前景。但我国城镇污水处理厂存在进水含砂量大及预处理段除砂效果不理想的问题, 导致剩余污泥泥砂含量高、有机质含量低, 极大地制约了污泥提取蛋白质的资源化利用途径(郝晓地等, 2014).污泥提取蛋白质及其资源化利用的程度取决于污泥的品质, 污泥蛋白质含量越高、无机杂质含量越低, 越有利于蛋白质的提取及利用.因此, 实现污水处理工艺剩余污泥蛋白质含量的增长具有重要意义.国内外对于污水处理新工艺的探索大多集中于深度脱氮除磷及重金属、抗生素等新兴污染物的去除上(Zhang et al., 2014; Barwal et al., 2016; Wu et al., 2016; Zhang et al., 2013; Yan et al., 2013), 尚未涉及在提高污水深度处理的同时, 提高进水中氮的同化比例及污泥蛋白质含量方面的研究。  生物吸附工艺在实现进水中碳源富集及去除残余的无机颗粒物等方面具有良好的效果(周健等, 1999; 魏小松, 2002; 员小峰等, 1992); 传统A2O(Anaerobic-Anoxic-Oxic)工艺具有较好的脱氮除磷性能(Zhou et al., 2011; Xie et al., 2016; Yan et al., 2016), 在城镇污水处理厂应用最为广泛(Wang et al., 2011); 膜生物反应器(Membrane Bio-Reactor, MBR)工艺具有良好的硝化及悬浮物截留能力(Tadkaew et al., 2011; Radjenovic et al., 2009; Wang et al., 2008), 在缩短水力停留时间(Hydraulic Retention Time, HRT)、节省占地面积等方面具有明显优势; 硫铁自养反硝化利用硫铁耦合系统实现自养脱氮及铁化学除磷(Wang et al., 2016; Kong et al., 2016), 具有高效、运行费用低的特点.这些技术在特定领域均具有独特优势, 如何进行合理组合实现污水的深度处理及获得高蛋白质含量污泥成为研究的新方向.  本研究通过建立生物吸附/A2O和生物吸附/MBR/硫铁自养反硝化两套污水处理新工艺小试试验平台, 在实现优质出水水质的同时, 对比剩余污泥泥量与泥质, 探索适合我国国情的污水处理新工艺。

北京看阳痿医院哪家好

山东济南看癫痫病去哪里好

沂水治疗牛皮癣专科医院

高邮癫痫医院哪家好